New GCSE Topics

In order to cater for the new grade 9, some new topics were added to the Edexcel IGCSE syllabus. The following is a selection of questions on these topics.

Completing The Square

1. Complete the square on $x^2 + 6x - 1$.	$(x+3)^2 - 10$
2. Complete the square on $x^2 - 10x + 3$.	$(x-5)^2 - 22$
3. Complete the square on $x^2 + 5x$.	$(x+\frac{5}{2})^2-\frac{25}{4}$
4. Complete the square on $x^2 + 2ax - 1$.	$(x+a)^2 - a^2 - 1$
5. Complete the square on $2x^2 + 16x + 3$.	$2(x+4)^2 - 29$
6. Complete the square on $3x^2 + 6x - 13$.	$3(x+1)^2 - 16$
7. Complete the square on $-x^2 + 8x - 3$.	$-(x-4)^2+13$
8. By completing the square, solve the equation $x^2 + 4x - 1 = 0$	$0. \qquad x = -2 \pm \sqrt{5}$
9. By completing the square, solve the equation $y^2 - y - 5 = 0$.	$\frac{1\pm\sqrt{21}}{2}$

- 10. By completing the square, find the vertex (i.e. the maximum or minimum) of the curve $y = x^2 8x + 5$.
- 11. By completing the square, find the vertical line of symmetry of the curve $y = x^2 2x + 1$.

Arithmetic Sequences

- 1. The *n*th term of a sequence is given by 3n+5. Write down the first five terms. [8, 11, 14, 17, 20]
- 2. The *n*th term of a sequence is given by $n^2 n$. Write down the first five terms. [0, 2, 6, 12, 20]
- 3. Find an expression for the nth term of the following:

(a) $4, 7, 10, 13, 16, \ldots$	3n + 1
(b) $100, 95, 90, 85, 80, \ldots$	-5n + 105
(c) $-11, -4, 3, 10, 17, \ldots$	3n - 18
4. Find the sum of $3 + 5 + 7 + 9 + 11 + \dots$ (200 terms).	40400

- 5. Find the sum of $10 + 15 + 20 + 25 + 30 + \dots$ (1000 terms).
- 6. Find the sum of $5 + 7 + 9 + 11 + 13 + \dots + 553$. (Hint: find how many terms there are.) 76725

Perpendicular Lines

- 1. Find the equation of the line perpendicular to $y = \frac{1}{3}x 1$ which passes through (3, -2). Give your answer in the form y = mx + c.
- 2. Find the equation of the line perpendicular to y = 2x + 3 which passes through (-1, 4). Give your answer in the form ax + by + d = 0, where a, b and d are integers. x + 2y - 7 = 0

2507500

Surds

1.	Simplify $\sqrt{8}$.	$2\sqrt{2}$
2.	Simplify $\sqrt{45}$.	$3\sqrt{5}$
3.	Simplify $\sqrt{200}$.	$10\sqrt{2}$
4.	Simplify $\frac{4}{\sqrt{2}}$.	$2\sqrt{2}$
5.	Simplify $\frac{100}{\sqrt{5}}$.	$20\sqrt{5}$
6.	Simplify $\frac{9}{\sqrt{27}}$.	$\sqrt{3}$
7.	Simplify $\frac{1}{1+\sqrt{2}}$.	$\sqrt{2}-1$
8.	Simplify $\frac{1-\sqrt{3}}{\sqrt{3}+1}$.	$\sqrt{3}-2$

Expanding Brackets

1. Expand and simplify $x(x-2)(x+5)$.	$x^3 + 3x^2 - 10x$
2. Expand and simplify $(y-4)(y-1)(y+2)$.	$y^3 - 3y^2 - 6y + 8$
3. Expand and simplify $(x-1)^3$.	$x^3 - 3x^2 + 3x - 1$
4. Expand and simplify $(2x+1)^3$.	$8x^3 + 12x^2 + 6x + 1$
5. Expand and simplify $(1 - x^2)^3$.	$1 - 3x^2 + 3x^4 - x^6$
6. Expand and simplify $(x+1)^3 - x(2x+3)(x-1)$.	$-x^3 + 2x^2 + 6x + 1$

\mathbf{Proof}

1. Prove that the sum of five consecutive positive integers is always divisible by 5.

Boils down to 5n + 10 = 5(n + 2). So a multiple of 5. 2. Prove (for positive integer n) that $(n + 1)^2 - 2n - 1$ always represents a square number. Boils down to n^2 . So a square. 3. Prove (for positive integer n) that $(n - 1)^2 + 4n + 1$ always represents a square number. Boils down to $(n + 1)^2$. So a square. 4. Prove (for positive integer n) that $3n^2 - 3n + 1 + (n - 1)^3$ always represents a cube number. Boils down to n^3 . So a cube.

5. Prove that the angle subtended in a semicircle is always 90° .

Draw radii. Two isosceles triangles. Then consider angle sum of overall triangle.

Trig Graphs & Graphical Transformations

1. Sketch the following graphs:

(a) $y = \sin x$.	Sine wave
(b) $y = \cos x$.	Cosine wave
(c) $y = \tan x$.	Tan 'wave'
(d) $y = 2\cos x$.	Cos wave. Up to 2, down to -2
(e) $y = \sin(x + 90)$.	Cos wave
(f) $y = \cos x + 1$.	Cos wave up one unit
(g) $y = \sin(2x)$.	Sine wave squished so wavelength 180 instead of 360
(h) $y = 5\sin 3x$.	Sine wave up to 5 down to -5, wavelength 120
(i) $y = \tan(x - 90)$.	Tan wave right 90, so asymptote on y-axis

2. By sketching the graph of $y = \sin x$ and $y = \frac{1}{2}$, find all solutions to $\sin x = \frac{1}{2}$ in the range 0 < x < 720.